k-dimensional transversals for fat convex sets

Attila Jung

Eötvös Loránd University

June 25, 2025

Joint with Dömötör Pálvölgyi

Attila Jung k-dimensional transversals for fat convex sets

Fractional Helly

Helly's theorem (1923):

 $\begin{array}{l} \mathcal{F}: \text{ finite family of convex sets in } \mathbb{R}^d \\ \text{any } (d+1)\text{-tuple of sets can be hit with a point} \\ \implies \text{ the whole family can be hit with a point.} \end{array}$

Fractional Helly

Helly's theorem (1923):

 \mathcal{F} : finite family of convex sets in \mathbb{R}^d any (d+1)-tuple of sets can be hit with a point \implies the whole family can be hit with a point.

Fractional Helly theorem (Katchalski, Liu '79):

positive fraction of (d + 1)-tuples of sets can be hit with a point \implies a positive fraction of the whole family family can be hit with a point.

Fractional Helly theorem (Katchalski, Liu '79):

positive fraction of (d + 1)-tuples of sets can be hit with a point \implies a positive fraction of the whole family family can be hit with a point.

FH more precisely

 $\forall d \in \mathbb{N}, \alpha \in (0, 1] \exists \beta \in (0, 1] \text{ such that}$ if \mathcal{F} is an *n*-element family of convex sets in \mathbb{R}^d and $\alpha \binom{n}{d+1}$ of the (d+1)-tuples can be hit with a point then there exists βn sets which can be hit with a point.

Vincensini '35:

Is it possible to generalize Helly's theorem to k-dimensional affine subspaces (k-flats) hitting convex sets?

Vincensini '35:

Is it possible to generalize Helly's theorem to k-dimensional affine subspaces (k-flats) hitting convex sets?

Santaló '40:

Vincensini '35:

Is it possible to generalize Helly's theorem to k-dimensional affine subspaces (k-flats) hitting convex sets?

Santaló '40:

Vincensini '35:

Is it possible to generalize Helly's theorem to k-dimensional affine subspaces (k-flats) hitting convex sets?

Santaló '40:

Vincensini '35:

Is it possible to generalize Helly's theorem to k-dimensional affine subspaces (k-flats) hitting convex sets?

Santaló '40:

• Alon and Kalai '95: FH for hyperplanes hitting convex sets.

Fractional Helly for k-flats

- Alon and Kalai '95: FH for hyperplanes hitting convex sets.
- Alon, Kalai, Matoušek, Meshulam '02: No FH for lines hitting convex sets in ℝ³.

Fractional Helly for k-flats

- Alon and Kalai '95: FH for hyperplanes hitting convex sets.
- Alon, Kalai, Matoušek, Meshulam '02: No FH for lines hitting convex sets in ℝ³.

J, Pálvölgyi '24+:

If $0 \le k < d$, and \mathcal{F} finite family of ρ -fat convex sets in \mathbb{R}^d , if a positive fraction of the (k + 2)-tuples can be hit with a k-flat, then there exists a k-flat hitting a positive fraction of the family.

• ρ -fat: ratio of radii of min enclosing and max inscribed balls is at most ρ .

J, Pálvölgyi '24+:

If $0 \le k < d$, and \mathcal{F} finite family of ρ -fat convex sets in \mathbb{S}^d , if a positive fraction of the (k + 2)-tuples can be hit with a great k-sphere, then there exists a great k-sphere hitting a positive fraction of the family.

J, Pálvölgyi '24+:

If $0 \le k < d$, and \mathcal{F} finite family of ρ -fat convex sets in \mathbb{S}^d , if a positive fraction of the (k + 2)-tuples can be hit with a great k-sphere, then there exists a great k-sphere hitting a positive fraction of the family.

• If $\mathbb{S}^d \subset \mathbb{R}^{d+1}$, and $L \subset \mathbb{R}^{d+1}$ is a linear (k+1)-flat, then $L \cap \mathbb{S}^d$ is a great k-sphere.

Conjecture

Let $p \ge q \ge k+2$, and \mathcal{F} a finite family of ρ -fat convex sets in \mathbb{R}^d . If among any p sets, some q can be hit with a k-flat, then there is a family of $c(p, q, k) < \infty$ k-flats hitting all of \mathcal{F} .

We can only prove it for balls instead of ρ -fat convex sets.

Conjecture

Let $p \ge q \ge k+2$, and \mathcal{F} a finite family of ρ -fat convex sets in \mathbb{R}^d . If among any p sets, some q can be hit with a k-flat, then there is a family of $c(p, q, k) < \infty$ k-flats hitting all of \mathcal{F} .

We can only prove it for balls instead of ρ -fat convex sets.

Thank you!