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The hypergraph Kd

Let Kd be the hypergraph whose vertices are the compact
convex sets in Rd .

Edges represent intersecting families of convex sets.

This edge set is downwards closed.
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Helly’s theorem

Theorem (Helly, 1923)

Let F be a family of compact convex sets in Rd . If every d + 1 of
them intersect, then ∩F ̸= ∅.

Theorem (Helly, 1923)

If S ⊂ V (Kd), and K(d+1)
d [S ] is a clique, then S ∈ Kd .

V (H): vertex set of hypergraph H.

H(q): q-uniform part — edges with exactly q vertices.

H[S ]: subhypergraph induced by S ⊂ V (H).
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The Alon–Kleitman (p, q)-theorem

Theorem (Helly, 1923)

If S ⊂ V (Kd), and K(d+1)
d [S ] is a clique, then S ∈ Kd .

Theorem (Alon and Kleitman, 1992)

For every p ≥ d + 1, there exists C < ∞ such that:

If S ⊂ V (Kd) and K(d+1)
d [S ] has no independent set of size p,

then S can be covered with C edges of Kd .

V (H): vertex set of hypergraph H.

H(q): q-uniform part — edges with exactly q vertices.

H[S ]: subhypergraph induced by S ⊂ V (H).
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Fractional Helly theorem

Theorem (Katchalski and Liu, 1979)

If S ⊂ V (Kd) is finite and

e(K(d+1)
d [S ]) ≥ α

(
|S |

d + 1

)
for some α > 0, then there exists an edge of Kd [S ] of size β|S |,
where β = β(α, d) > 0.

e(H): number of edges.
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Fractional Helly property (general form)

Definition

A q-uniform (possibly infinite) hypergraph H satisfies the
fractional Helly property if: For all α > 0 there exists β > 0 such
that for every finite S ⊂ V (H) with

e(H[S ]) ≥ α

(
|S |
q

)
,

H[S ] contains a q-uniform clique of size β|S |.

Katchalski, Liu ’79: K(d+1)
d satisfies the fractional Helly

property.
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The hypergraph Bd ,k

Vertices: compact balls in Rd .

Edges: families of balls that can be pierced by a single k-flat.

Theorem (Keller and Perles, 2022)

If S ⊂ V (Bd ,k) and B(k+2)
d ,k [S ] has no infinite independent set, then

S can be covered with finitely many edges of Bd ,k .
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Our main result

Alon–Kleitman type hypergraph: ∃q∀p ≥ q∃C < ∞ such
that if H(q)[S ] has no independent set of size p, then S can
be covered with at most C edges of H.

Keller–Perles type hypergraph: If H(q)[S ] has no infinite
independent set, then S can be covered with finitely many
edges of H.

Theorem

If an Alon-Kleitman type hypergraph satisfies the fractional Helly
property, then it is Keller-Perles type.

Theorem

If a q-uniform hypergraph satisfies the fractional Helly property
and has arbitrarily large finite independent sets, then it has an
infinite independent set.
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Corollaries

Theorem

Let F be a family of compact convex sets in Rd . If among every
ℵ0 members of F some d + 1 are intersecting, then all the
members of F can be pierced by finitely many points.

Theorem (Chackraborty, Ghosh, Nandi ’24)

Let F be a family of compact convex sets in Rd . If among every
ℵ0 members of F some d + 1 can be pierced by a hyperplane, then
all the members of F can be pierced by finitely many hyperplanes.

Theorem

Let F be a family of compact convex sets in Rd . If among every
ℵ0 members of F some d + 1 contain a point in their intersection
with integer coordinates, then all the members of F can be pierced
by finitely many points with integer coordinates.
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Proof sketch

Theorem

If a uniform hypergraph satisfies the fractional Helly property and
has arbitrarily large finite independent sets, then it has an infinite
independent set.

1 Fractional Helly property: If a uniform hypergraph has edge
density at least α > 0 on a large vertex set, then it contains a
clique on a β-fraction of its vertices (for some β = β(α) > 0).

2 If a hypergraph has the fractional Helly property, then every
induced balanced multipartite graph is sparse.

3 Take an increasing sequence of finite independent sets
S1 ⊂ S2 ⊂ . . . with |Sn| → ∞.

4 Apply Ramsey-type arguments to find a large homogeneous
subhypergraph: S ′

1 ⊂ Si1 , S
′
2 ⊂ Si2 , . . .

5 Use (2) to conclude that
⋃

i S
′
i spans an independent set.
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Key lemma

Let H be a q-uniform hypergraph with disjoin vertex sets
V1,V2, . . . ,Vn, . . . ⊂ V (H) with |Vi | → ∞.

Lemma

We can find subsets V ′
i ⊂ Vi with wn = max{|Vi | : i ≤ n} → ∞

and the following property.
If i1 < i2 < . . . < iq and vj ∈ V ′

ij
,

then {v1, . . . , vq} ∈ H depends only on v1.

Thank you!
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