Helly-type theorems for monotone properties of boxes

Nóra Frankl and Attila Jung

Eötvös University, Budapest

EUROCOMB'25

Helly's theorem

Helly '23: Intersection of any d+1 members of a finite family \mathcal{F} of <u>convex sets</u> in \mathbb{R}^d is nonempty $\Rightarrow \cap \mathcal{F} \neq \emptyset$

Helly's theorem

Helly '23: Intersection of any d+1 members of a finite family \mathcal{F} of convex sets in \mathbb{R}^d is nonempty $\Rightarrow \cap \mathcal{F} \neq \emptyset$

For boxes: Intersection of any 2 members of a finite family \mathcal{B} of boxes in \mathbb{R}^d is nonempty $\Rightarrow \cap \mathcal{B} \neq \emptyset$

Quantitative Helly

Bárány-Katchalski-Pach '82: Intersection of any 2d members of a family \mathcal{F} of convex sets in \mathbb{R}^d has volume $\geq 1 \Rightarrow \operatorname{vol}(\cap \mathcal{F}) \geq \nu(d)$.

Quantitative Helly

Bárány-Katchalski-Pach '82: Intersection of any 2d members of a family $\mathcal F$ of convex sets in $\mathbb R^d$ has volume $\geq 1 \Rightarrow \operatorname{vol}(\cap \mathcal F) \geq \nu(d)$.

For boxes: Intersection of any 2d members of a family \mathcal{B} of boxes in \mathbb{R}^d has volume $\geq 1 \Rightarrow \operatorname{vol}(\cap \mathcal{B}) \geq 1$.

A simple property of boxes

Lemma: Any finite family \mathcal{B} of boxes in \mathbb{R}^d contains a subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of at most 2d boxes, such that $\cap\mathcal{B}=\cap\mathcal{B}'$.

A simple property of boxes

Lemma: Any finite family \mathcal{B} of boxes in \mathbb{R}^d contains a subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of at most 2d boxes, such that $\cap\mathcal{B}=\cap\mathcal{B}'$.

Proof.

 $<_i$: ordering on $\mathcal B$ according to the bounding hyperplane in direction i.

 $B_i := \text{smallest box in } \mathcal{B} \text{ according to } <_i.$

Then
$$\cap_i B_i = \cap \mathcal{B}$$
.

 B_1

Lemma: Any finite family \mathcal{B} of boxes in \mathbb{R}^d contains a subfamily $\mathcal{B}' \subseteq \mathcal{B}$ of at most 2d boxes, such that $\cap \mathcal{B} = \cap \mathcal{B}'$.

Lemma: Any finite family \mathcal{B} of boxes in \mathbb{R}^d contains a subfamily $\mathcal{B}' \subseteq \mathcal{B}$ of at most 2d boxes, such that $\cap \mathcal{B} = \cap \mathcal{B}'$.

A property P is monotone if $B \in P$ and $C \supseteq B$ implies $C \in P$.

- volume
- containing an integer point

Lemma: Any finite family \mathcal{B} of boxes in \mathbb{R}^d contains a subfamily $\mathcal{B}' \subseteq \mathcal{B}$ of at most 2d boxes, such that $\cap \mathcal{B} = \cap \mathcal{B}'$.

A property P is monotone if $B \in P$ and $C \supseteq B$ implies $C \in P$.

- volume
- containing an integer point

Corollary: If the intersection of every subfamily of \mathcal{B} of size 2d has property P, then the intersection of all the members of \mathcal{B} has property P.

Lemma: Any finite family \mathcal{B} of boxes in \mathbb{R}^d contains a subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of at most 2d boxes, such that $\cap\mathcal{B}=\cap\mathcal{B}'$.

A property P is monotone if $B \in P$ and $C \supseteq B$ implies $C \in P$.

- volume
- containing an integer point

Corollary: If the intersection of every subfamily of \mathcal{B} of size 2d has property P, then the intersection of all the members of \mathcal{B} has property P.

► Halman '08 and Edwards-Soberón '24: when *P* = containing a point from a given finite set

Theorem (FJ): Let $\mathcal{B}_1, \ldots, \mathcal{B}_{2d}$ be finite families of boxes in \mathbb{R}^d . Then there is a selection $B_i \in \mathcal{B}_i$ for each $i \in [2d]$ and an index $\ell \in [2d]$ such that $\bigcap_{i=1}^{2d} B_i \subset \bigcap \mathcal{B}_{\ell}$.

Theorem (FJ): Let $\mathcal{B}_1, \ldots, \mathcal{B}_{2d}$ be finite families of boxes in \mathbb{R}^d . Then there is a selection $B_i \in \mathcal{B}_i$ for each $i \in [2d]$ and an index $\ell \in [2d]$ such that $\bigcap_{i=1}^{2d} B_i \subset \bigcap \mathcal{B}_{\ell}$.

Proof.

Sequentially define a permutation $\pi \in S_{2d}$ such that $\mathcal{B}_{\pi(i)}$ contains a minimal element $B_{\pi(i)}$ of $\bigcup_{j=1}^{n} \mathcal{B}_{j} \setminus (\bigcup_{j=1}^{i-1} \mathcal{B}_{\pi(j)})$ according to $<_{i}$.

Then $\bigcap_{i=1}^{2d} B_{\pi(i)} \subseteq \bigcap \mathcal{B}_{\pi(2d)}$, so we can choose $\{B_{\pi(1)}, \ldots, B_{\pi(2d)}\}$ and $\ell = \pi(2d)$.

Theorem (FJ): Let $\mathcal{B}_1, \ldots, \mathcal{B}_{2d}$ be finite families of boxes in \mathbb{R}^d . Then there is a selection $B_i \in \mathcal{B}_i$ for each $i \in [2d]$ and an index $\ell \in [2d]$ such that $\bigcap_{i=1}^{2d} B_i \subset \bigcap \mathcal{B}_{\ell}$.

Theorem (FJ): Let $\mathcal{B}_1, \ldots, \mathcal{B}_{2d}$ be finite families of boxes in \mathbb{R}^d . Then there is a selection $B_i \in \mathcal{B}_i$ for each $i \in [2d]$ and an index $\ell \in [2d]$ such that $\bigcap_{i=1}^{2d} B_i \subset \bigcap \mathcal{B}_{\ell}$.

Corollary: If for every choice $B_i \in \mathcal{B}_i$ the family $\{B_1, \ldots, B_{2d}\}$ is P-intersecting, then there exists an $\ell \in [2d]$ such that \mathcal{B}_ℓ is P-intersecting.

Theorem (FJ): Let $\mathcal{B}_1, \ldots, \mathcal{B}_{2d}$ be finite families of boxes in \mathbb{R}^d . Then there is a selection $B_i \in \mathcal{B}_i$ for each $i \in [2d]$ and an index $\ell \in [2d]$ such that $\bigcap_{i=1}^{2d} B_i \subset \cap \mathcal{B}_{\ell}$.

Corollary: If for every choice $B_i \in \mathcal{B}_i$ the family $\{B_1, \ldots, B_{2d}\}$ is P-intersecting, then there exists an $\ell \in [2d]$ such that \mathcal{B}_ℓ is P-intersecting.

When P= having volume ≥ 1 , we obtain a volumetric Colourful Helly result with $\nu(d)=1$.

Theorem (FJ): Let $\mathcal{B}_1, \ldots, \mathcal{B}_{2d}$ be finite families of boxes in \mathbb{R}^d . Then there is a selection $B_i \in \mathcal{B}_i$ for each $i \in [2d]$ and an index $\ell \in [2d]$ such that $\bigcap_{i=1}^{2d} B_i \subset \bigcap \mathcal{B}_{\ell}$.

Corollary: If for every choice $B_i \in \mathcal{B}_i$ the family $\{B_1, \ldots, B_{2d}\}$ is P-intersecting, then there exists an $\ell \in [2d]$ such that \mathcal{B}_ℓ is P-intersecting.

- When P = having volume ≥ 1 , we obtain a volumetric Colourful Helly result with $\nu(d) = 1$.
- **Edwards-Soberón** '24: When P = containing at least n points from a given finite set

 \mathcal{B} is a family of boxes in \mathbb{R}^d .

Theorem (FJ): If at least $\alpha\binom{|\mathcal{B}|}{d+1}$ of the (d+1)-tuples in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of size at least $\beta|\mathcal{B}|$ for some $\beta=\beta(\alpha,d)$.

 \mathcal{B} is a family of boxes in \mathbb{R}^d .

Theorem (FJ): If at least $\alpha\binom{|\mathcal{B}|}{d+1}$ of the (d+1)-tuples in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of size at least $\beta|\mathcal{B}|$ for some $\beta=\beta(\alpha,d)$.

► Edwards-Soberón '24: When *P* = containing a point from a given finite set.

 \mathcal{B} is a family of boxes in \mathbb{R}^d .

Theorem (FJ): If at least $\alpha\binom{|\mathcal{B}|}{d+1}$ of the (d+1)-tuples in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of size at least $\beta|\mathcal{B}|$ for some $\beta=\beta(\alpha,d)$.

Edwards-Soberón '24: When P = containing a point from a given finite set.

Theorem (FJ): Let $0 < \alpha \le 1$ be large. If at least $\alpha \binom{|\mathcal{B}|}{2}$ of the pairs in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}' \subseteq \mathcal{B}$ of size at least $\beta |\mathcal{B}|$.

 \mathcal{B} is a family of boxes in \mathbb{R}^d .

Theorem (FJ): If at least $\alpha\binom{|\mathcal{B}|}{d+1}$ of the (d+1)-tuples in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of size at least $\beta|\mathcal{B}|$ for some $\beta=\beta(\alpha,d)$.

► Edwards-Soberón '24: When *P* = containing a point from a given finite set.

Theorem (FJ): Let $0 < \alpha \le 1$ be large. If at least $\alpha \binom{|\mathcal{B}|}{2}$ of the pairs in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}' \subseteq \mathcal{B}$ of size at least $\beta |\mathcal{B}|$.

► Eom-Kim-Lee '25: When P = containing a point from a given finite set

 \mathcal{B} is a family of boxes in \mathbb{R}^d .

Theorem (FJ): If at least $\alpha\binom{|\mathcal{B}|}{d+1}$ of the (d+1)-tuples in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}'\subseteq\mathcal{B}$ of size at least $\beta|\mathcal{B}|$ for some $\beta=\beta(\alpha,d)$.

Edwards-Soberón '24: When P = containing a point from a given finite set.

Theorem (FJ): Let $0 < \alpha \le 1$ be large. If at least $\alpha \binom{|\mathcal{B}|}{2}$ of the pairs in \mathcal{B} are P-intersecting, then there exists a P-intersecting subfamily $\mathcal{B}' \subseteq \mathcal{B}$ of size at least $\beta |\mathcal{B}|$.

► Eom-Kim-Lee '25: When P = containing a point from a given finite set

Thank you!